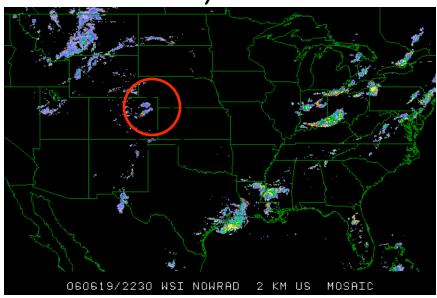
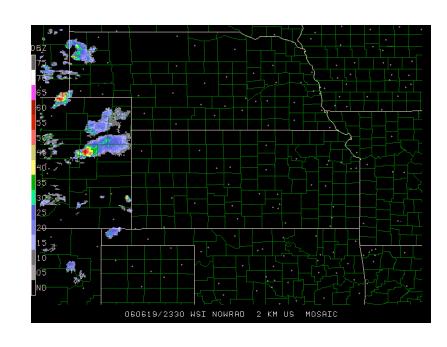
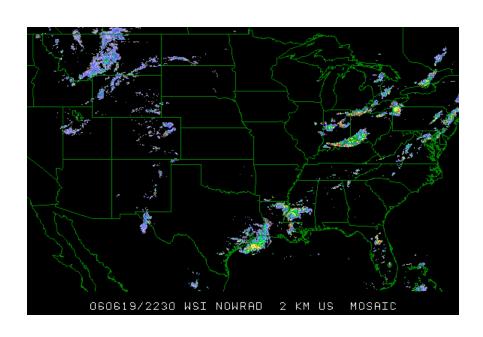
Deep Convective Clouds and Chemistry May - June 2011 Colorado - Alabama

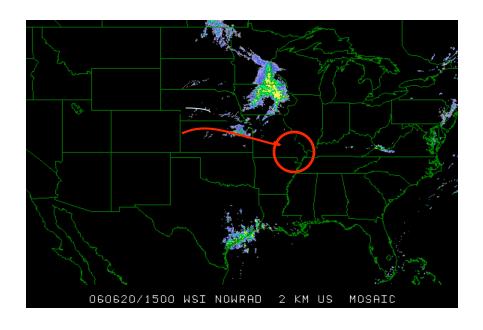



Steven Ghan (PNNL) Mary Barth, Chris Cantrell (NCAR) Bill Brune (PSU), Steve Rutledge (CSU)

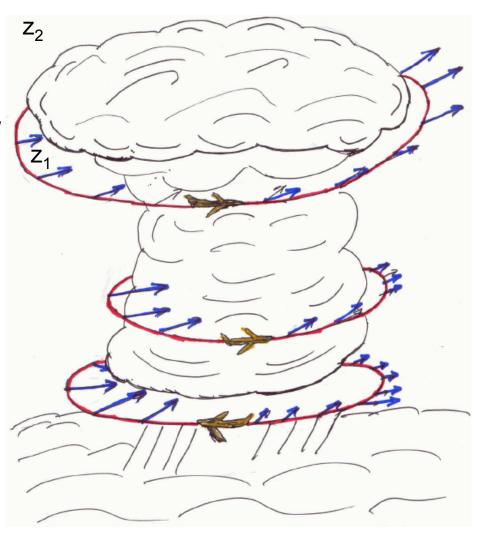
- ASP is charged with improving understanding and representation of the aerosol life cycle.
- Deep convection plays important roles in vertical transport, aqueousphase production, nucleation, and scavenging of trace chemicals and particulate matter.
- The representation of this influence in global climate models is highly uncertain.
- DOE does not have an aircraft that can sample detrainment of trace species from deep convection.
- The DC3 experiment proposed to NSF would provide upper tropospheric measurements that would complement DOE measurements in the lower troposphere.

DC3 Goals


- 1. To quantify and characterize the convection and convective transport within the first few hours of active convection, investigating:
- storm dynamics and physics,
- lightning and its production of nitrogen oxides,
- cloud hydrometeor effects on wet scavenging of species,
- chemistry in the anvil



DC3 Goals

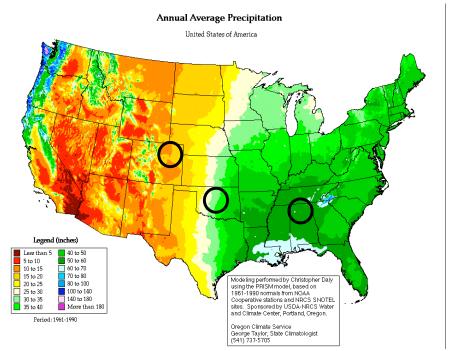

- 2. To quantify the changes in chemistry and composition after active convection, focusing on
- 12-48 hours after convection and
- the seasonal transition of the chemical composition of the upper troposphere

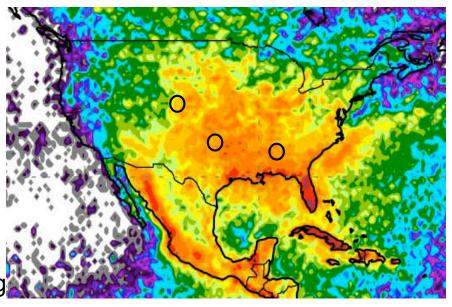
A Sampling Strategy (Don Lenschow)

- •Circles around cloud cloud at 3 km altitude intervals
- •Flux of q into cloud: $F_q(z) = \frac{1}{A} \oint_C v_\perp q dl$
- •Entrainment below z_1 : $E_q = \int_0^{z_1} \rho F_q dz$
- Detrainment above z_1 : $D_q(z) = \int_0^{z_2} \rho F_q dz'$
- •Scavenging ratio $S_q = \frac{E_q D_q}{E_q}$ •S=0 for dry air
 - 5~1 for soluble gases and large soluble particles
 - S<<1 for insoluble gases

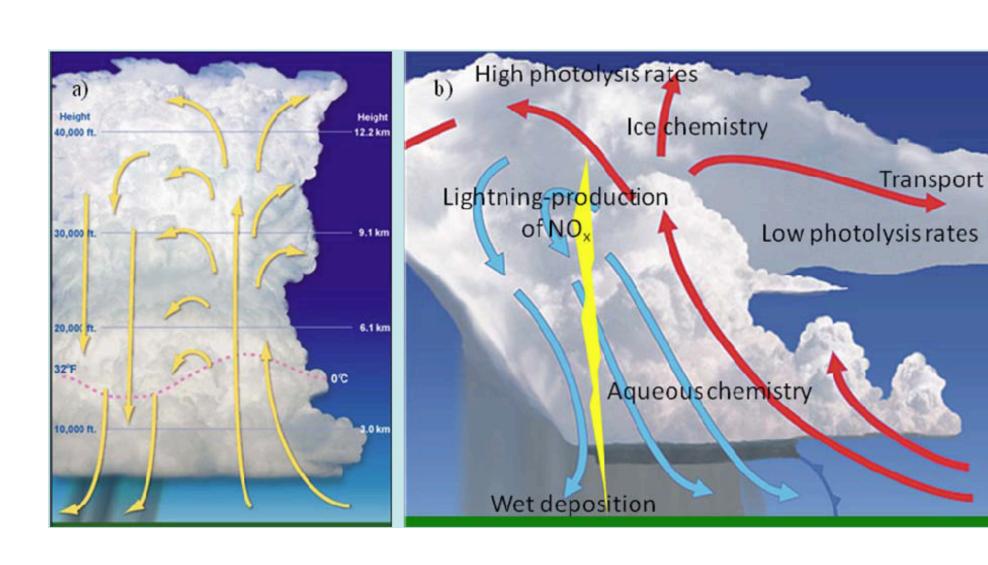
Key Platforms

- DC3 would provide
 - NSF/NCAR G-V to sample the convective outflow and mass fluxes in the mid to upper troposphere, and convective plumes 100-1000s km downwind of the sampled, active convection
 - either the NASA DC-8 or the NSF/NCAR C-130 to sample the inflow of aerosol and trace gases and the mass fluxes in the middle troposphere
- ASP would provide the G-1 to sample the inflow of aerosol and trace gases and the mass fluxes in the lower troposphere


Setting


Lightnir

May and June 2011 7-8 week period


Northeast Colorado and Central Oklahoma and Northern Alabama

- Sufficient ground-based facilities
- Likelihood of convection occurring in one of the three places is good
- Contrast different environments (long-lived, shear storms vs airmass storms; high cloud bases vs low cloud bases; low chemical emissions vs higher emissions)

Questions?

Key Measurements

Measurement	DC-8	G-V	G-1
O ₃ , CO, HNO ₃ , SO ₂	1	1	1
NO, NO _y , NO ₂	1	1	1
H ₂ O vapor	1	1	1
Peroxides	1	1	1
Size-resolved aerosol comp	1	2	1
(AMS)			
Aerosol size distribution	1	2	1
CNC (7 nm)	1	1	1
Ice particles	1	1	
CVI		2	
Time-Resolved Aerosol			1
Collector			
CCN	1	2	1
Inorganic particulate	2		1
composition			
Radioactive tracers	1		
Aircraft standard (winds, T, P,	1	1	1
location)			
Vertical velocity	1	1	1

1: essential. 2. desirable

DOE Platform: Gulfstream-1

- Nominal operating altitude: 1,000 ft AGL to 25,000 ft (7.5 km) MSL
- Nominal sampling speed: 195 knots (100 m s⁻¹)
- Nominal rate of climb: 500-1000 ft min⁻¹ (2.5-5 m sec⁻¹)
- Endurance with maximum fuel: 6 hours
- Crew capacity: 2 pilots and 1 to 5 scientists and engineers
- Cabin payload at maximum gross weight, with full fuel: 2,500 lb (1,134 kg) including scientific crew and instruments
- Cabin dimensions: 21 ft (6.4 m) long; 7 ft (2.13 m) wide; 6 ft (1.83 m) high
- Cabin floor space: 165 ft2 (15.3 m2)
- Entrance door dimensions: 29 in. (74 cm) wide; 58 in. (147 cm) high
- Interior cabin passage way dimensions: 29 in. (74 cm) wide; 68 in. (173 cm) high
- Standard 19" equipment rack dimensions: 17 & 24 in. (43 & 61 cm) deep; 22 & 42.5 in. (56 & 108 cm) wide; 42 in. (107 cm) high
- Floor mounting track width: 12 in. (30.48 cm)
- Supplemental air conditioning: 3 heat-exchangers in cabin rated at ~6000 BTU each
- Electrical power: 300 A @ 28 VDC provides 4,000 V-A at 115 VAC 60 Hz and 4,000 V-A at 230 VAC 60 Hz

DOE Real-time Aerosol Measurement Capabilities

Measurement	Instrument	Technique	Range
Size distribution	Tandem Scanning Electrical Mobility System (TSEMS)	Electrical mobility & optical counting	5 - 800 nm @ 60s noise ~N1/2
Size distribution	PMS PCASP- 100X/DMT-SPP-	Optical light scattering	0.1-3 μm
Condensation particle concentration	131 3010	Supersaturation + optical detection	>7 nm 0-105 /cm3
Ultrafine particle concentration	TSI 3025A	supersaturation + optical detection	>3 nm 0-105 /cm3
Particle organic composition	Aerodyne Aerosol Mass Spectrometer	TOF sizing, thermal vaporization, electron impact ionization, quadrupole MS	20 nm - 2 μm 0.1 μg/m3 10 <m amu<br="" z<300="">@ 1 s integration</m>
Isokinetic aerosol inlet	Brechtel inlet	Double-diffuser, active inlet	90 - 110 m/s TAS, 0-2500 m altitude

DOE Real-time Gas Measurement Capabilities

Measurement	Instrument	Technique	Range
O ₃	TEI 49	UV absorption	5-500 ppb
502	TEI 435	Pulsed fluorescence	0.3-200 ppb
СО	Vacuum UV TEI 48	UV fluorescence IR absorption/gas filter correlation	<5 ppb @1 s 20 ppb @10s
NO/NO ₂ /NO _y	3-channel NO/NO₂/NOy	O_3 chemiluminescence (NO) Photolytic conversion (NO $_2$) Hot Mo conversion (NO $_y$)	NO ~10 ppt @ 10 s NO ₂ ~50 ppt @10 s NO _y ~100 ppt @10 s
NO/NO _y	TEI 42C	O ₃ chemiluminescence	0.2-200 ppb
H ₂ O ₂	3-channel Peroxide System	Glass scrubber, selective derivitization, fluorimetry	~60 ppt @1 min

DOE Time-Integrated Measurement Capabilities

Measurement	Instrument	Technique	Range
PAN	GC/ECD	Gas chromatography electron capture detection	50 ppt-100 ppb
NO ₂ & PAN	NO ₂ & PAN	GC/Luminol chemiluminescence	15-30 ppt
Particle ionic composition	Particle-in- Liquid System (PILS)	Liquid ion chromatography	~0.1 µg/m3 @ ~3 min
Single particle chemical composition	Time-Resolved Aerosol Collector	Impaction + CCSEM/EDX	0.2 - 7 μm >2 atomic % 30-60 s sample

DOE Cloud Measurement Capabilities

Measurement	Instrument	Technique	Range
Particle & Droplet size distribution	DMT CAPS	Optical light scattering	5-50µm
Particle & droplet imaging	DMT CAPS	Optical imaging	25-1550μm
Liquid water content	DMT CAPS	Hot wire	0.01-3.0 g/m3
Liquid water content and droplet size	Gerber PVM- 100A	Optical light scattering	0-10 g/m3 2-70 μm
Droplet size distribution	PMS FSSP-300	Optical light scattering	2-47 μm
Droplet size distribution	PMS OAP-2D	Optical light scattering	20-1240 μm

Other

Measurement	Instrument	Technique	Range
Lightning	WX500 Stormscope	Static discharge detection	
Area precipitation	Honeywell-Sperry	Color weather radar	
Gust-probe differential pressure, dynamic	Rosemont 1221F2	Capacitive capsule with electronic conditioning (temperature correction, etc.)	0 to +100mb; -55°C to +71°C

What DOE Wants from DC3

- G-1 can't reach the detrainment level of deep clouds
- DOE ASP needs measurements of concentrations and detrainment rate (integrated around anvil) of
 - Tracers
 - Gases
 - Aerosol
 - Cloud